quinta-feira, 17 de junho de 2010



O átomo é a menor partícula que ainda caracteriza um elemento químico. Ele apresenta um núcleo com carga positiva (Z é a quantidade de prótons e "E" a carga elementar) que apresenta quase toda sua massa (mais que 99,9%) e Z elétrons determinando o seu tamanho.[1]

Até fins do século XIX, era considerado a menor porção em que se poderia dividir a matéria. Mas nas duas últimas décadas daquele século, as descobertas do próton e do elétron revelaram o equívoco dessa ideia. Posteriormente, o reconhecimento do nêutron e de outras partículas subatômicas reforçou a necessidade de revisão do conceito de átomo.
O modelo planetário de Niels Bohr foi um grande avanço para a comunidade científica, provando que o átomo não era maciço. Segundo a Teoria Eletromagnética, toda carga elétrica em movimento em torno de outra, perde energia em forma de ondas eletromagnéticas. E justamente por isso tal modelo gerou certo desconforto, pois os elétrons perderiam energia em forma de ondas eletromagnéticas, confinando-se no núcleo, tornando a matéria algo instável.

Bohr, que trabalhava com Rutherford, propôs o seguinte modelo: o núcleo contendo os prótons e nêutrons e definiu as órbitas estacionárias, onde o elétron orbitaria o núcleo, sem que perdesse energia. Entre duas órbitas, temos as zonas proibidas de energia, pois só é permitido que o elétron esteja em uma das órbitas. Ao receber um quantum, o elétron salta de órbita, não num movimento contínuo, passando pela área entre as órbitas (daí o nome zona proibida), mas simplesmente desaparecendo de uma órbita e reaparecendo com a quantidade exata de energia. Se um pacote com energia insuficiente para mandar o elétron para órbitas superiores encontrar o elétron, nada ocorre. Mas se um fóton com a energia exata para que o elétron salte para órbitas superiores, ele certamente o fará, depois, devolvendo a energia absorvida em forma de ondas eletromagnéticas.

quarta-feira, 16 de junho de 2010




A Teoria das cordas (ou teoria das supercordas) é um modelo físico cujos blocos fundamentais são objetos extensos unidimensionais, semelhantes a uma corda, e não por pontos sem dimensão (partículas) que eram a base da física tradicional. Por essa razão, as teorias baseadas na teoria das cordas podem evitar os problemas associados à presença de partículas pontuais (entenda-se de dimensão zero) em uma teoria física tradicional, como uma densidade infinita de energia associada à utilização de pontos matemáticos. O estudo da teoria de cordas tem revelado a necessidade de outros objetos não propriamente cordas, incluindo pontos, membranas, e outros objetos de dimensões mais altas.

O interesse na teoria das cordas é dirigido pela grande esperança de que ela possa vir a ser uma teoria de tudo. Ela é uma possível solução do problema da gravitação quântica e, adicionalmente à gravitação, talvez poderá naturalmente descrever as interações similares ao eletromagnetismo e outras forças da natureza. As teorias das supercordas incluem os férmions, os blocos de construção da matéria. Não se sabe ainda se a teoria das cordas é capaz de descrever o universo como a precisa coleção de forças e matéria que nós observamos, nem quanta liberdade para escolha destes detalhes a teoria irá permitir. Nenhuma teoria das cordas fez alguma nova predição que possa ser experimentalmente testada.

Trabalhos na teoria das cordas têm levado a avanços na matemática, principalmente em geometria algébrica. A teoria das Cordas tem também levado a novas descobertas na teoria da supersimetria que poderão ser testadas experimentalmente pelo Grande Colisor de Hádrons. Os novos princípios matemáticos utilizados nesta teoria permitem aos físicos afirmar que o nosso universo possui 11 dimensões: 3 espaciais (altura, largura e comprimento), 1 temporal (tempo) e 7 dimensões recurvadas (sendo a estas atribuídas outras propriedades como massa e carga elétrica, por exemplo), o que explicaria as características das forças fundamentais da natureza.

O estudo da chamada teoria das cordas foi iniciado na década de 60 e teve a participação de vários físicos para sua elaboração. Essa teoria propõe unificar toda a física e unir a Teoria da relatividade e a Teoria Quântica numa única estrutura matemática. Embora não esteja totalmente consolidada, a teoria mostra sinais promissores de sua plausibilidade.
Física é a ciência que estuda os fenômenos naturais, especialmente no que concerne as propriedades e interações da matéria e da energia. Trata dos componentes fundamentais do Universo, as forças que eles exercem e os resultados destas forças. O termo vem do grego φύσις (physis), que significa natureza, pois nos seus primórdios ela estudava, indistintamente, muitos aspectos do mundo natural. A Física difere da Química, ao lidar menos com substâncias específicas e mais com a matéria em geral, embora existam áreas que se cruzem, como a Físico-química (intimidade da matéria). Dessa forma, os físicos estudam uma vasta gama de fenômenos físicos, em diversas escalas de comprimento: das partículas subatômicas, das quais toda a matéria é originada, até o comportamento do universo material como um todo (Cosmologia).

A Física é uma das mais antigas disciplinas acadêmicas, talvez a mais velha de todas através da sua inclusão na astronomia. Ao longo dos dois últimos milênios, a física foi considerada sinônimo de filosofia, química e certos ramos da matemática e biologia mas durante a Revolução Científica no século XVI, ela tornou-se uma ciência única e moderna por mérito próprio. Contudo, em algumas áreas como a física matemática e a química quântica, as fronteiras da física mantêm-se difíceis de distinguir.

A Física é tanto significante como influente, em parte porque os avanços na sua compreensão foram muitas vezes traduzidos em novas tecnologias, mas também porque as novas ideias na física muitas vezes ressoam com as outras ciências, matemáticas e filosóficas. Por exemplo, avanços na compreensão do electromagnetismo influenciaram directamente o desenvolvimento de novos produtos que transformaram dramaticamente a sociedade moderna. (ex: televisão, computadores e eletrodomésticos); avanços na termodinâmica influenciaram o desenvolvimento do transporte motorizado; e avanços na mecânica inspiraram o desenvolvimento do cálculo.

Como ciência, a Física faz uso do método científico. Baseia-se na Matemática e na Lógica para a formulação de seus conceitos.